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Abstract

A multi-modal system integrating computer vision and speech recognition to enable interaction with
virtual spaces/objects by natural gestures and speech is described. Computer vision algorithms are em-
ployed to measure and interpret hand/finger movement of the user. Our research focuses on detection,
tracking, recognition and visual feedback of the hand and finger movements in a cooperative user environ-

ment, and the integration of gesture and speech recognition for man/machine communication.

1 Introduction

1.1 Background

Humans regularly specify and manipulate real physical space and objects by controlled movements of their
arms, hands and fingers; they communicate their intentions and gloals most naturally through speech. The
arm, hand and body movements range from simple actions, such as pointing at an object in space, to
expressing meaning through sign language or to aséembling parts into a complex object. Our research

focuses on a user’s hand gestures and actions to express intentions with respect to an object or part of a
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scene in a graphic environment. The environment is rendered to the user through stereoscopic head-mounted-
display (HMD), (Sony LDI-D100). A video camera mounted on the user’s HMD is employed to recognize
the hand/finger gestures in the context of speech and cause modifications to the virtual world.

Human gestures, in conjunction with a limited speech vocabulary, can be categorized into

1. Identification gestures, like pointing, that identify locations/objects in space. So, a person might

e place an object,

[ ]

identify goals for an object’s movement,

e indicate that a collection of objects be treated as a group,

segment groups into subgroups, or

change an object’s internal state.

A person might first use speech to indicate the type of identification action to be performed (e.g.,
group), and then use a hand gesture to control the application of the action (e.g., outline the set of

elements to be grouped)‘.
2. Action gestures that specify the movement of an object or a group so that a person could

o Specify a translation or a rotation of an object, etc.
e Control a virtual tool to “reshape” the virtual world he inhabits, or

o Directly apply forces that deform and alter the shape of an object

Our research builds on our prior work for detection of people and their body parts from color video (2],
motion estimation of rigid, articulated and deformable motions [1,3,4] and recognition of facial and body
activities [1,3] to develop real-time hand gesture recognition.

There is relatively little reported research on un-encumbered interfaces for human-computer interaction
focusing on hand and finger movements. For a review of research aspects of gesture use in human-computer

interaction see [18]. Sato et al.[21] proposed an augmented reality system that uses an infrared video camera




to increase the robustness of the system for detection of the user’s hand and fingers over a horizontal desktop.
The augmented reality system was used in manipulating WWW pages and a text book by determining the
hand and finger pose in the image. Wu et al. [29] describe a system for tracking and recognizing hand
posture with respect to a virtual blackboard. The distance between the person and the camera is relatively
large so that a fine analysis of finger gestures was not carried out. Derivation of 3D information of the arm’s
location was pursued to enable recognition of the intended hand movements. Kang-Hyun et al. [13] describe
a system for recognizing hand gestures for human-computer interaction. The user is assumed to wear a
green glove which is tracked and analyzed to determine the intention behind the gesture. A state space is
maintained to constrain the recognition of user intentions. Lee at al. [16] describe an interactive system for
determining the location (on a 2D board) at which a finger is pointing from 2D information by employing
homography and morphing. The design utilizes two camera to enable determining the coordinate pointed at

on the screen.

1.2 Vision
Our vision for future multimodal interfaces is motivated by the following factors:

e The centrality of a multi-modal interface (e.g., vision and speech). Integration of speech with visual

information is needed for achieving effective human-computer interaction in virtual environments.

o The importance of passive vision techniques instead of wearable sensors to avoid imposing constraints on
user’s use of hands and fingers. Specifically, we design representations for gestures, learning algorithms
that can recover these representations from examples and real-time computer vision algorithms that

can recognize these gestures from (possibly multi-perspective) video.

o The utility of a closed-loop visual feedback framework to enhance the immersion of the user. The is
achieved by texture mapping the virtual scene with the user’s hands, achieving a blending of real /virtual

scenes.
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Figure 1: Sketch of Wearable System

Figure 1 sketches the system. One or more video cameras are mounted or embedded on the head mounted
display. These cameras generate video streams that capture hand and finger movements within a narrow

field of view. The video data is overlayed on a graphical scene that is shown to the user as feedback.

2 System Description

2.1 Overview

Figure 2 shows a high level overview of the system. There are two input streams, an acoustic source from a
microphone and a video camera (we currently use a single camera due to the real-time constraint). Both are
mounted close to the user to capture the speech and hand movements that occur. The output is a graphic
scene that shows the user’s hand overlayed onto a synthesized scene, as well as graphical content to reflect
the user’s actions when those are recognized. The acoustic stream is fed to an off-the-shelf speech recognition
engine which in turn passes recognition results to our system. The video consists of a small digital video
camera streaming at 30 frames/second.

In the first image the hand is detected using a skin-color classification algorithm [11]. The detected region
is analyzed to determine if it corresponds to one of the known hand postures. Currently, it is assumed that

the hand can be either in an open hand posture or a grab posture (see Figures 16 and 13). Once a posture
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Figure 2: Software Architecture

has been determined, the system detects the back of the hand as well as the fingers and tracks them in
subsequent images.

The tracking of hand and finger motio.ns extends th‘e work of Black and Yacoob [5] to estimate the motions
of fingers using a 2D motion formulation. The result is a set of parameters that describes the instantaneous
motion of the hand and the fingers. These parameters are in turn used by a rule-based system to recognize
the occurrence of a limited set of gestures. Currently, the system focuses on Click and Grab actions. Each
action is divided into begin-hold-end segments.

The tracked hand and fingers as well as any interpreted actions of the hand are overlayed onto graphical

scene such as a map or a 3D scene. The user, accordingly, can move their hand and fingers to affect the

synthesized scene and manipulate its contents.

2.2 Speech Recognition

We employ speech recognition software (IBM-Via Voice) to provide text-to-speech and speech-to-text pro-
cessing. We designed grammars that support understanding the user’s spoken sentences and executing them.
Currently, speech is used to instruct the system to move the hand to specific locations in the scene since

actual movement over large physical space is limited by the narrow field of view of the camera. Also, speech




Figure 3: Illustration of image processing leading to hand and finger detection and labeling, skin color
detection, skin region after expansion and contraction and labeling using the convex hull of the region as
well as contour depth analysis.

is used to introduce graphic objects into the scene.

[ Command category | Example |
Move Absolute Location | Move to Washington
Move to center
Move to top-left corner
Move Relative Move left
Move up
Import Object Import cube
Import pen
Remove Object Remove cube
Remove pen
Grouping Command Begin grouping
End grouping
Manipulate Object Flip object vertically
Flip object horizontally
Draw Draw with index finger
Draw with hand

Table 1: The speech input used in the system

2.3 Hand and Finger Detection

Hand and finger detection are critical first steps to enable hand tracking and gesture recognition. Several
approaches have recently been reported [8, 20, 26, 32]. Zhu et al. [32] employ Bayes decision theory to
develop a hand color model and segment the region assuming that the hand color is consistent within the

region. The hand model is computed based on a set of training images pre-labeled manually with hand




and non-hand pixels. A mixture of Gaussians is used to represent the foreground and background colors.
Delamarre and Faugeras [8] proposed a stereo-based approach for finding the hand pose in video sequences.
A detailed 3D hand and finger model is used to fit the depth information computed from a stereo system.
Triesch [26] proposed to recognize hand postures by matching features computed using Gabor filters and
Elastic Graph matching. The model graph is derived from a training set of images. Rosales et al. [20]
proposed an architecture that computes moment-based features of the hand image regions and matches
them to synthesized image regions of hand poses captured using a data glove. This representation allows
rendering the hand pose from any view on a viewing sphere. The matching considers a many-to-many
mapping that is handled by a specialized mapping architecture.

Skin detection is a straightforward way to detect the hand and finger regions. For a comparative study
of skin classification algorithms from color imagery see [12, 23, 25]. Most algorithms perform a statistical
analysis of sample skin regions during a modeling stage and then use the model for classification. Models
include single Gaussian, Gaussian mixture density model or histograms. Jones and Rehg [12] suggest that
histograms have a slight advantage over Gaussian models while Terrillon et al. [25] focused on Gaussian
models. Comparative performance involved assessing when a 3D RGB representation is better than a nor-
malized 2D chrominance space normalization. The authors evaluated nine normalized color spaces with
respect to a single Gaussian and mixture of Gaussians models of skin. Overall it was concluded that for a
small training sample a single Gaussian performs well while mixture models and histograms perform better
with un-normalized color spaces and larger training sets (see citations for a complete discussion). Sigal et al.
[23] proposed an evolving color distribution model for skin detection. A second order Markov model is used
to predict the evolution of the skin color histogram over time. The evolution is parameterized by translation,
scaling and rotation in color space.

Our system employs a skin detection algorithm for hand detection and initialization of hand and finger
regions for the tracking algorithm (see [11]). The basic assumption is made that for a Lambertian surface
the measured color results from brightness and surface spectral reflectance. A model that separates these

two components can facilitate color constancy detection by focusing on the surface spectral reflectance
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Figure 4: Illustration of brightness and chromaticity color model

component. Figure 4 illustrates the color model proposed in [11]. In the figure E; = (E,(2), Ey(3), Eb())
represents the expected (modeled) color R, G, B values at pixel ¢ and I; = (Ir(), I,(3), [y()) is the actual
R, G, B color at pixel . The line OE; is called the expected chromaticity line. The distortion between I;
and E; can be attributed to brightness and chromaticity by observing that brightness difference is equivalent

to bringing the point I; to the line OF; and can be posed as minimization of the error function

flog) = (I — i By)? ‘ (1)

where a; represents the current brightness with respect to the brightness of the model (being greater than
1 if it is more bright and less than 1 if it is less bright). Color distortion, C'D;, is defined as the distance
between I; and «;

CD; = ||I; - & Eil| 2)

Computing a skin model involves using one or more sample images of skin (manually segmented) and
computing a 4-tuple < Ej,d;,as,b; > where E, is the mean (R, G, B) value for the skin color, d; is the
standard deviation of the skin color training set, as is the variation of the brightness distortion among

the points in the training set and b, is the variation in the chromaticity among these points. This model




is employed to classify skin or non-skin colors while accounting for shadows and highlights as particular
brightness values with respect to the model. Once a skin model is computed it does not change unless the
illumination in the scene has changed considerably. A pixel i is classified as skin or non-skin based on the
observed distortion value a; that is computed with respect to the color model. A threshold value is used to
accept the brightness and chromaticity deviation from the skin color model. Specifically, a pixel is classified

by first computing the distortion o

o = T @Dpr00) + Ty (i)pg/79) + (Bo(Dps/01)’ 3)
z (ur/0r)? + (1g/0g)? + (no/00)?
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oD \ﬂ (i) ;raw)ﬂ 4 (B =)y () — ) @

g O

where (pir, 14, o) is the mean of the skin color in the training set and (o, a4, 03) is the standard deviation
of this set. A point is classified as skin if the computed C'D; is smaller than a preset threshold and a; falls
in value between two thresholds that are determined automatically based on the desirable detection rate of
the skin color in the training sequence (since the skin region is presegmented manually a detection of 100%
is used).

The skin region is further consolidated using a standard binary connected component analysis that
employs an expand/contract iterative process to construct a region without holes and minimal noise. Figure
3 illustrates the stages of this process.

The candidate region is analyzed to determine if it fits one of the known posture of the hand and fingers.
Currently, two postures are represented, an open hand and a grab-ready hand (see Figures 5, 16, 13). The
matching of a region to a posture involves (1) computing the convex hull of the region (2) determining the
maximum distance points on the hand silhouette from the convex hull (i.e., the deepest concavity distances)
(3) hypothesizing finger locations (4) verifying that the back of the hand and finger regions are mostly skin
color and that overall spatial properties are plausible (constraints on sizes of the region of the fingers and

their distances). Figure 5 illustrates the posture analysis. The convex hull of the open-hand region (left) is
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Figure 5: Illustration of hand posture analysis for an open hand and a pre-grabbing posture

computed and the four deepest concavities in the region are chosen as the candidate points for between-finger
locations. Then, lines are projected from the right and left-most of these four points and hypotheses for
ﬁng.er and backhand regions are created. The veriﬁcétion step determines whether each of the regions is
mostly skin, that the relative sizes are within thresholds (e.g., the pinkie is smaller than the other fingers
except the thumb). The picture on the right shows a pre-grab pose of the hand. Here the thumb and the
index finger are detected. Only the deepest concavity point is sought and used for the initialization process.

The hand initialization approach has been effective in the environment we have been developing. Note
also that since the user is cooperative, he/she can change her hand posture until the system provides a
graphic feedback indicating it has been initialized correctly. There are two cases where the labeling of hand
and finger regions is not successful, if (1) the hand posture does not conform to one of the known ones, or
(2) the background includes large regions with skin-like colors. In these cases, the user continues to guide
the system to initialize until its criteria are met. A different type of failure occurs when the system mislabels
the regions. When this occurs the user observes that the system was not successful and he/she changes the

posture of her hand (by moving it out of the field of view of the camera) to force the system to re-initialize.
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2.4 Hand and Finger Tracking

Algorithms for estimating hand and finger motion have been described in [31, 19, 22]. Yang and Ahuja
[31] used motion segmentation, color and geometric information to detect the hand palm region in image
sequences and build a trajectory graph. Shimadaet al. [22] employed a 3D detailed hand and finger model to
track the movement between frames. They use an estimation by image synthesis from an initialization that is
close to the hand posture, and refine the estimate by incorporating silhouette features and prior probability
models. Stenger et al. [24] describe a method that employs an anatomic model of the hand to estimate the
joint angles from the projected contours of the hand regions into the image. The results are made more
robust by a variation on Kalman filtering. In [10] a deformable model that employs a surface mesh that is
constructed by PCA from training examples is used. Wu et al. [28] used a data glove device to develop a
model of constraints on finger articulation and then use a Monte Carlo tracking algorithm to estimate angles
in the scene. Rehg and Kanade [19] developed a model-based approach for handling occlusions that occur
during finger movements. A 3D model of the hand was used to anticipate and account for visibility of finger
regions during motion.

We propose a tracking algorithm that estimates rigid and deformable motions of hands and fingers in
the 2D image space. The tracking estimates the motion of the hand between two consecutive frames. The
hand is divided into the backhand and the fingers. The former is assumed to move as a rigid planar object
and therefore can be tracked using a planar or affine parameterized motion model [5]. The latter are tracked
using a parameterized motion model that is inspired by a deformable model for tracking eyebrow motion [5].

Tracking proceeds in three stages. In the first the backhand region motion is estimated. In the second
stage the estimated backhand motion is used to register the full region of the hand (i.e., backhand and
fingers) of the image at time ¢ + 1 to the hand region in frame ¢. This cancels the rigid motion of the
backhand but leaves out the finger articulation/deformation. The third stage estimates the deformation of
each finger between frames from its known region at time ¢.

Before the proposed model is discussed we review basic concepts related to optical flow. Let I(z,y,t)
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be the image brightness at a point (z,y) at time ¢. Since changes between consecutive images are generally

small, it is typical to employ the brightness constancy assumption for a point in motion which is given by
I(z,y,t) =I(z +u,y+v,t+1) (5)

where (u, v) is the horizontal and vertical image velocity at location (z,y). Applying a Taylor Series approx-

imation (assuming locally constant flow) and dropping terms leads to
0 :Il‘(xay)t)u-*_Iy(a::yyt)v-l_‘[t(x:y:t) (6)

where I, I, and I; are the spatial and temporal derivatives of the intensity image I(t) relative to I(t + 1).
Since Equation 6 is underconstrained for the computation of (u,v) at a single pixel, it is usually reposed as
a minimization of a least squares error of the flow over a very small neighborhood, R, of (z,y) in which the
velocity is constant over R (more complex models are possible as discussed below). In this case we choose
(u, v) to minimize

E(u,v) = Z (I:(z,y,t)u+ Ly(x,y,t)v + Li(z,y, 1))%. )
(z.9)ER

Instead of the classical least squares minimization in Equation 7 it is preferable to employ a robust estimation

approach as proposed in [3], resulting in

E(u,0)= Y. p(le(z, 9, )u+ Lz, 9, t)v + L(z,y,1),0.) (8)
(z,y)ER

where p is a robust error norm that is a function of a scale parameter .. The computational aspects of the
multi-scale model follow, generally, the approach proposed by Black and Anandan [3, 4]. The minimization

is carried out using a descent method, Simultaneous Over-Relaxation (SOR). The minimization of E(u, v)
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with respect to u and v is achieved using an iterative update equation, so at step n +1

1 0F

(n+1) _ n) o 7
Yoy Yy T Y T g ) Otg

9)
where 0 < w < 2 is an overrelaxation parameter which is used to overcorrect the estimate of up y "+ at
stage n + 1 (a similar treatment is given for v). The value of w determines the rate of convergence. The

term T'(uy y) is an upper bound on the second partial derivative of E

0’E
T(ufyy) 2 62u1-’y (10)

To achieve a globally optimal solution the robust error norm p is started with a large enough scale parameter
o. to find a solution using the SOR technique, then iteratively repeating this process while decreasing o and
starting with the last estimate. The choice of a large enough o, guarantees convexity of the error function at
the beginning of the process which is followed by the use of the Graduated Non-Convexity method developed
by [6]. The iterated decrease in o reduces the influence of the outlier measurements and thereby refines the
estimates.

The robust error norm chosen is the one proposed by Geman-McClure [9] (see Figure 6)

2

z
plz, o) = P (11)
and its derivative
2z0
Vo) = G e (12

Figures 7 and 8 illustrate the flow results computed at each point of the mouth during a speech image
sequence. The images in Figure 7 show frames from a long sequence of mouth motion during speech. The
dense flow shown in Figure 8 shows examples for optical flow fields computed from the long image sequence

and not just the images shown in Figure 7.
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Figure 6: The robust error norm p (left) and its derivative (right) taken from Geman-McClure

Figure 7: Example frames for one letter in the training set.
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Figure 8: Sample flow computed from an image sequence of mouth motion during speech. The vector at
each point shows the magnitude and direction of the (u,v) values computed at the point.
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The local constant-flow model can be replaced by a model that integrates information over a larger
neighborhood of the image under more general assumptions about the variation of the motion. Parameterized
models of image motion make explicit the assumptions about the motion and typically assume that the image
flow can be represented by a low-order polynomial [2]. Within small image regions, the following affine model

of image motion is often sufficient [14] to represent the motion of a plane under orthographic projection:

u(z,y) = ao+a1z+azy (13)

v(z,y) = asz+asz+asy (14)

where the a; are constants, (u(z,y), v(z,y)) are the horizontal and vertical components of the flow at the
image point (z,y), and the spatial positions (z,y) are defined with respect to some image point (typically
the center of the region).l

The parameters a; have qualitative interpretations in terms of image motion (see Figure 9). For example,
ap and ag represent horizontal and vertical translation respectively. Additionally, we can express divergence
(isotropic expansion), curl (rotation about the viewing direction), and deformation (squashing or stretching)

as combinations of the a; [7, 14]:

divergence = a3 +as = (uz +vy), (15)
curl = —as+as=—(uy —vz), (16)
deformation = a1 —as = (uy — vy) (17)

where the subscripts ¢ and y indicate partial derivatives of the image velocity. Divergence, curl and the
magnitude of the deformation have the convenient property of being invariant to rotations of the image
coordinate frame [7].

The motion of the backhand as a planar object under perspective projection is captured by an eight-
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Figure 9: Interpretation of parameters for affine and planar motion.

parameter model [1, 27]:

\

u(z,y) = ao+amz+ay+ poz? + pray, (18)

v(z,y) = asz+ a4+ asy+ poxy + pry?. (19)

These parameters roughly represent “yaw” and “pitch” deformations in the image plane respectively and

are illustrated in Figure 9.

The affine model can be expanded to a general model for finger deformation:

u(z,y) = ao + a1z + azy + agz? + a7y, (20)

v(z,y) = as + asz + asy + agy® + agz>. (21)

This model combines the affine transformation as well as more specialized transformations shown in Figure

16
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Figure 10: Interpretation of motion parameters. Solid lines reflect hand region at time ¢ while dashed lines
reflect the region at ¢ + 1.
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Figure 11: Examples for a7 and as from a real sequence of finger clicking and grabbing (left and right,
respectively).

10. The figure shows the motion that is captured by the quadratic terms ag, a7, as and ag assuming that
the region of the finger is placed at the center of the coordinate system. While this motion model is rich in
capturing various finger deformations it can be simplified by taking into account that the gestures we are most
interested can be captured by a subset of these parameters, specifically a7,ag and ag. This motion model
approximates the finger region appearance under motions such as clicking and grabbing. The estimation of
the models can thus be done on a subset of the 10 parameters. Note that the region’s location is not invariant
to the coordinate system. In practice, each finger region is defined with respect to a local coordinate system
shown in Figure 10 and it is done automatically for each frame.

Figure 11 shows examples of the recovered motion parameters for tracking of finger motions during a
click and grab actions. The left graph shows the estimated value of a7 for a click finger motion repeated two
times. As shown in Figure 10. as the finger is depressed the parameter a7 assumes a negative value and as
it is released a positive value is recovered. The repeated gesture shows similar parameter values. The graph
on the right shows the value of parameter ag during a grab-release sequence. The value is negative for grab

closure and positive for grab opening.
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2.5 Finger gesture/motion recognition

Gesture hand and finger movement recognition have been approached using Hidden Markov Models {15, 17}
and state transition diagrams [13]. Jo et al. [13] proposed a state space diagram that constrains the
recognition of user intentions by explicitly marking allowable transitions. Image features obtained from
extracted hand regions are used to control state transitions. While other recognition tools are generally
available for recognition (e.g., neural networks, Principal Component Analysis, Nearest Neighbor) overall
only a few algorithms have been reported for recognition of hand and finger movements.

Recognition of hand and finger gestures and motions is central to our system’s interface between the user

and the synthesized scene. There are multiple levels of recognition:

o General hand and finger movements with intention to reach a particular location or object in the scene.
The system simply reflects the user’s hand motion in the scene as the user executes the motions. As
a result, it relies on the user to place her hand and fingers in the scene and when she is satisfied she

then executes an intended action.

e Single finger movements intended to affect part of the scene in simple ways such as clicking or dragging.
The system detects the begin-hold-end of a click action of the fingers by employing a rule-based system
that uses the parameter values recovered at each frame in addition to those in a preceding temporal
window. The beginning and ending of a clicking finger action are reflected in the synthesized scene by

a visual feedback such as a color change of the active area or object.

o Multiple finger movements employing several fingers to accomplish a coordinated task such as grabbing
or releasing of an object. In this case, a rule-based system is used to recognize if the simultaneously

beginning and ending on the respective finger’s actions reflect the intended action.

Action recognition is done directly from the motion parameters computed during tracking the finger
movements. As shown in Figure 11, the parameters directly reflect the deformation of the tracked finger

region and thus are indicative of the finger motion between frames. In earlier work [5] a rule-based system
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was used to interpret facial actions from similar parameters and in another approach [30] a Principal Com-
ponent Analysis based approach was developed to model and recognize actions in high-dimensional space
of parameters (40D space). Here, we employ a simple rule-based recognition system since the number of
parameters is small and the model of finger actions is relatively simple. Each parameter is thresholded and
turned into a label: POSITIVE ACTIVE or NEGATIVE ACTIVE ér NEUTRAL. If five consecutive frames
are of the same label then a respectively higher level action is recognized. For example, in Figure 11, at the
top, the five consecutive instances of NEGATIVE ACTIVE trigger a BEGIN CLICK, the five consecutive
instances of POSITIVE ACTIVE trigger END CLICK and overall they recognize the finger gesture of click-
ing. Similarly in the graph on the right, the NEGATIVE ACTIVE is followed by POSITIVE ACTIVE for
one finger. However, for a grab recognition the thumb must perform the reverse activity simultaneously.

Table 2 describes the conversion of parameter values into the symbols used for recognition of finger

actions.
( Command category | Example |
POSITIVE CLICK ag > 0.00005
NEGATIVE CLICK ag < —0.00005
NEUTRAL —0.00005 < ag < 0.00005

POSITIVE INDEX GRAB a7 < —0.0001
NEGATIVE INDEX GRAB | a7 > 0.0001
NEUTRAL INDEX GRAB —0.0001 < a7 > 0.0001
POSITIVE THUMP GRAB | a7 < —0.0001
NEGATIVE THUMP GRAB | a7 > 0.0001
NEUTRAL THUMP GRAB | —0.0001 < a7 > 0.0001

Table 2: The recognition rule for Click and Grip from finger motion parameters

2.6 Graphic rendering

We developed stereo modeling and rendering software that allows us to render graphic scenes on the Sony
HMD. It allows the user to tune several parameters (e.g., parallax, eye distance) to control the viewing of
the 3D scene. The software employs Open GL to create the scene and texture map image regions (such as

user hands) taken from the video camera onto synthetic objects in real-time and render the scene from stereo
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vantage points.

2.7 Implementation

Real-time performance is critical since feedback from the system reinforces and corrects gestures that are
performed by the user. The algorithms have been implemented to achieve a frame rate of between 20-30HZ.
The implementation employs a dual processor PC and an efficient implementation that takes advantage of

the computational architecture of the Intel Pentium III processors.

3 Experiments

Figures 16, 13 and 15 show the movement of the hand and fingers as they are tracked and overlayed over a
map conveying a clicking and grabbing gestures. As the user moves his hand, the overlayed. scene is updated.
When the user executes a gesture the scene is changed to reflect the intent of the user. In the case of clicking,
the active link changes color and a message is shown on the screen indicating what was selected, while in
the case of grabbing and displacing an object the color of the object changes from red to green and it is
moved with the hand until it is released. The figures show a 2D view of the scene; we also implemented 3D
rendering where stereoscopy is used to enhance the depth effect in the graphic scene.

In Figure 13 the hand is shown grabbing an object (introduced verbally to the map) and moving it to
another location then releasing it. The change in the color of the object provides the user a feedback that
the object is being held or released as the actions are }‘ecognized. Figure 12 show the images captures by
the camera.

In Figure 16 the index finger is shown clicking on an image label (69) placed onto an augmented map of
the Washington DC Metro area. The top left images show the beginning of the click while the recognition
of the click occurs as soon as the finger bends back to its normal position (bottom two images). The label
Clicked 69 shows the user that the action has been recognized. In this map the user can select points marked

with black square and a number in it.
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Figure 12: Images of hand movement during a grabbing sequence (top left, right and bottom left and right,
respectively
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Figure 13: Images of hand tracking and overlay on a map for a object Grip and Move action
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Figure 14: Images of hand movement during a click (top left, right and bottom left and right, respectively
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Figure 15: Images of hand tracking and overlay during a clicl action
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Finally, Figure 15 shows a clicking on a keypad similar to Figure 16. Here the key 2 has been recognized

* as the object of the action. Figure 14 show the images captures by the camera.

4 Summary and Future Work

The reported research considered an end-to-end system for multimodal interface to manipulate a virtual
scene. Speech recognition was used to alter the scene composition in situations where vision of the user
gesture is of limited utility as well as cases in which the change is best affected by speech. Visual analysis
focused on a closed-loop feedback to the cooperative user. This reduced the challenge to the vision algorithms
and enhanced overall performance. Both fundamental as well as system implementation challenges were
encountered and addressed.

We are currently developing an algorithm for hand depth estimation to support accurate rendering of the
user’s hand within the geometry of the synthetic scene. Computational power should in the near future allow
higher frame-rate processing and as a result accuracy of tracking and 3D depth estimation will improve.

Expanding the vision analysis to handle more hand postures and gestures as well as more complex
movement scenarios is planned and remains challenging. Richer interactions with an object that involve
hand-object occlusions remain a serious obstacle since they require complex 3D analysis in both the graphical

and visuals scenes.
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